
Text Terminal Support via XLM Scripting

PageManager Pro XML Scripting Format

The format of the protocol script is XML-based. XML is a formatted ASCII text that
makes it possible to define special data structures.

The scripting file describes a certain protocol and the steps necessary for sending a
message.
The protocol description file consists of a number of items where each item
represents one operation, e.g. the sending or receiving of certain data.

A sample file describing a very simple text -bases messaging protocol might look like
follows.

<?xml version="1.0"?>

<mm_protocol name="Scripting - Sample" version="1.0">

<item
 name="start"
 operation="receive">
 <received goto="enter_number">
Welcome to My Service. Enter number ...
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item
 name="enter_number"
 operation="send">
 <send goto="text_prompt">
[[MM_MSG_TO]][[MM_MSG_ASCII(0D)]]
 </send>
</item>

<item
 name="text_prompt"
 operation="receive">
 <received goto="enter_text">
Number correct. Enter message ...
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item
 name="enter_text"
 operation="send">
 <send goto="again">
[[MM_MSG_MESSAGEBODY]][[MM_MSG_ASCII(0D)]]
 </send>
</item>

<item
 name="again"
 operation="receive">
 <received goto="not_again">
Message accepted. Do you want to send another message (Y or N)?

 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item
 name="not_again"
 operation="send">
 <send goto="end" result="0">
N[[MM_MSG_ASCII(0D)]]
 </send>
</item>

<item
 name="end"
 operation="terminate">
</item>

</mm_protocol>

The above file describes a protocol that will prompt the client for a recipient number
and for the message text in order to send the message. The information flow might
look like follows.

Dialing.
Connecting.
Receiving: Welcome to My Service. Enter number ...
Sending: 1234567<CR>
Receiving: Number correct. Enter message ...
Sending: Hello world.<CR>
Receiving: Message accepted. Do you want to send another message (Y or N)?
Sending: N<CR>
Hang up call.

Structure of the Protocol Definition File

In the following table all parts of the protocol description file are described.

mm_protocol This element specifies the wrapper of the protocol description. It

contains all the protocol items.

Attributes:

name:

The name of the protocol.

version:

The version number of this protocol description. At the
moment only 1.0 is available.

item This element is a sub-element of mm_protocol and represents a
protocol entity, e.g. the sending or receiving of a data packet.

Attributes:

name:
The mane of the item. This name is used in order to
address the item from out of other items. The name start
is reserved for representing the start item and the name
end is reserved for representing the end item.

operation:

Specifies the operation this item is used for.

The following operations are supported:
send:

This item is used to send a data packet to the
server.

receive:
This item is used to receive a data packet from the
server.

next:
This items forces the messaging process to
continue with the next message if available.

terminate:
This item is used to terminate the protocol
session. The component will close the connection
afterwards.

received This element is a sub-element of the item element if the

operation attribute is receive.

The content of this element represents a text according to the
data expected to receive here. A receive item can contain more
than one received elements. These elements work like a switch.
Depending on the actual data received the one or the other
action will be triggered.

Attributes:

goto:

The goto attribute specifies the item name of the next
item that should be triggered in case the according data
was received.

result:
This attribute specifies the result code that should be
returned if the session would be terminated in the next
step. This result code can be overwritten by sub-
sequential result attributes. The result must be 0 if no
error has occurred.

received_else This element is a sub-element of the item element if the

operation attribute is received.

This element has basically the same functionality as the received
element but it will be triggered if a text was received but no
other received element does contain fitting data.

This element has no content.

Attributes:

This element has the same attributes as the received element.

received_nothing This element is a sub-element of the item element if the
operation attribute is received.

This element has basically the same functionality as the received
element but it will be triggered if no data was received during
the wait-time period.

This element has no content.

Attributes:

This element has the same attributes as the received element.

send This element is a sub-element of the item element if the
operation attribute is send.
The content of this element represents the text data to be sent
to the server.

The following keywords are possible in the text data (the
keywords will be translated into the appropriate message part
during the communication process):

[[MM_MSG_TO]]:

The recipient number.

[[MM_MSG_FROM]]:

The sender number or sender id.

[[MM_MSG_MESSAGEBODY]]:

The message text.

[[MM_MSG_ASCII(DD)]]:

An ASCII character where DD means the hexadecimal
encoded character, e.g. [[MM_MSG_ASCII(33)]] will be
translated to the ASCII character ‘3’.

Further fields, e.g. user name, password, etc., can be hard-
coded in the protocol description file as plain text.

One item can contain only one send element.

Attribute:

goto:

The goto attribute specifies the item name of the next
item that should be triggered in case the according data

was received.

result:
This attribute specifies the result code that should be
returned if the session would be terminated in the next
step. This result code can be overwritten by sub-
sequential result attributes. The result must be 0 if no
error has occurred.

next This element is a sub-element of the item element if the

operation attribute is next .

The attributes of this element apply if a next message was
found.

Attribute:

goto:

The goto attribute specifies the item name of the next
item that should be triggered in case the according data
was received.

result:
This attribute specifies the result code that should be returned if
the session would be terminated in the next step. This result
code can be overwritten by sub-sequential result attributes. The
result must be 0 if no error has occurred.

nonext This element is a sub-element of the item element if the
operation attribute is next .

The attributes of this element apply if no next message could be
found, i.e. if all messages have been processed and no message
is left anymore.

Attribute:

goto:

The goto attribute specifies the item name of the next
item that should be triggered in case the according data
was received.

result:
This attribute specifies the result code that should be returned if
the session would be terminated in the next step. This result
code can be overwritten by sub-sequential result attributes. The
result must be 0 if no error has occurred.

First steps

Each XML script must be located in the same directory as PageManager Pro. The
name specified within the XML scripting file will become the name of the base service
later.

In order to test XML scripting files just while creating them the according files can be opened
in the Internet Explorer version 6.0. This browser will show the XML file in a tree structure or
it will provide error information if the XML file is malformed.

Orange Terminal Example for England
(Terminal Phone: 44 07973 100602)

<?xml version="1.0"?>

<mm_protocol name="Scripting - Orange UK" version="1.0">

<item name="start" operation="receive">
 <received goto="choose_option">
:- Exit
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item name="choose_option" operation="send">
 <send goto="pager_number_prompt">
s
 </send>
</item>

<item name="pager_number_prompt" operation="receive">
 <received goto="enter_number">
Enter destination Orange or Hutchison Pager number and press return
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item name="enter_number" operation="send">
 <send goto="text_prompt">
[[MM_MSG_TO]][[MM_MSG_ASCII(0D)]]
 </send>
</item>

<item name="text_prompt" operation="receive">

 <received goto="enter_text">
Type your message (160 characters max) and press return to send
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item name="enter_text" operation="send">
 <send goto="again">
[[MM_MSG_MESSAGEBODY]][[MM_MSG_ASCII(0D)]]
 </send>
</item>

<item name="again" operation="receive">
 <received goto="next_message" result="0">
Message accepted - thankyou
 </received>
 <received_else goto="end" result="-1"/>
 <received_nothing goto="end" result="-1"/>
</item>

<item
 name="next_message" operation="next">
 <next goto="choose_option" result="0"/>
 <nonext goto="not_again" result="0"/>
</item>

<item name="not_again" operation="send">
 <send goto="end" result="0">
E
 </send>
</item>

<item name="end" operation="terminate">
</item>

</mm_protocol>

